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Abstract: The study investigates Geo-Spatial Pest Migration Modelling In Andean Tuber Production Using Artificial Intelligence 
(AI) to forecast and control pest outbreaks that will instigate the sustenance of crops. The experiment is a combination of remote 
sensing maps, GIS layers and environmental attributes (temperature, humidity, vegetations index, and soil moisture levels) used to 
track the pest migration in the Andes (high altitude areas). The pest movement patterns were modeled using four AI algorithms, 
namely, Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting (GB) and CNN-LSTM. Research results showed 
that CNN-LSTM has the highest accuracy of 95.4% which is much better than RF (90.2%), GB (92.8%), and SVM (88.9%). CNN-
LSTM model has also the lowest Root Mean Square Error (RMSE) of 0.041 exhibiting excellent skills in temporal prediction. The 

results of a comparative analysis of the existing pest forecasting studies revealed that the accuracy and the accuracy of the spatial 
hotspots detection were improved by 8-12 percent. With the advanced AI-GIS system, farmers can change timely and data-oriented 
intervention patterns due to the early warning of pest outbreaks. This will help decrease the pesticide dependence, enhance crop 
resistance, and foster sustainable Andean farming. 
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I. INTRODUCTION 

In the Andean area with rich biodiversity and special high altitude ecosystems, a significant part of the world potato 

grower, oca, ulluco, mashua, is their significant major one. These are tuber crops that are a source of food, nutrition 

and income within the local areas [1]. Nevertheless, the threat of pest infestations due to the climate variability, land-

use, and ecological changes is severe to the Andean agriculture. Conventional ways of monitoring pests that depends 

on field surveys conducted manually and past records are usually not effective in capturing the dynamic and migratory 

behaviour of pest people in complex landscapes [2]. Consequently, this leaves farmers prone to arbitrary reduction in 

yield and the use of chemical pesticides, which damage the ecosystems and people. The trends in recent technologies 

in the areas of artificial intelligence (AI) and geospatial technologies offer a perspective of creating a solution that 

provides insights into and forecasts pest migration patterns. Using remote sensing information, geographic information 
systems (GIS), and AI-driven predictive modelling, the researchers will be able to detect pest hotspots, track the 

migration pathways, and predict outbreak probability more precisely [3]. Convolutional neural networks and random 

forest models are machine learning algorithms that can be applied to large volumes of data on temperature, humidity, 

vegetation indices, and soil conditions in order to identify spatial-temporal trends in pest behavior. In the Andean 

tuber production situation, geo-spatial pest migration modelling based on AI allows taking a more proactive pest 

management approach. It aids in early warning procedures, precision agriculture, and region-specific adaptative 

control procedures. The proposed study is the development of an AI-based model that will be capable of mapping and 

predicting pest migration through Andean tuber systems to enhance crop protection and sustainability. This research 

will help in boosting food security, ecological independence, and resilience of Andean agriculture to climate and 

environmental crises by enhancing the ecological understanding and data-driven intelligence. 

 

II. RELATED WORKS 

 

The study of the nexus of artificial intelligence (AI), geospatial analysis, and pest control in Andean tuber production 

has been quite popular over the past years. A number of the studies also highlight that the production of smart systems 

in ensuring sustainable management of potato crops as well as the reduction of losses caused by pests is important in 

the Andean region. Danielak et al. [15] mentioned the increasing demands of machine-based, non-destructive quality 

analysis of potatoes on the basis of the imaging and AI. Their research journal indicated that a coordinated combination 

of computer vision and machine learning could be used to identify internal and external defects of potatoes without 

damaging the goods. This strategy highlights the overall opportunities that AI has in the field of agricultural 

diagnostics, such as the detection of pests and diseases. In the same fashion, Pavel [16] made a detailed research on 

the infestation of insect pests of local varieties of potatoes and examined the biorational management practices. The 

paper has highlighted the importance of local pest surveillance and adaptive control measures, which can be in line 
with the objectives of AI-based predictive modelling to Andean pest migration. Etherton et al. [17] came up with the 

concept of disaster plant pathology, which entails the use of intelligent solutions and digital technologies to anticipate 

and control the threat of plant health caused by natural and alternative disasters. This strategy creates a basis in the 

application of AI-based geospatial systems to predict the outbreak of pests based on climatic change and 

environmental stressors. Fuller et al. [18] examined plant domestication and agricultural ecologies which place the 

perspective of how domesticated and Andean tuber varieties have co-evolved with pests and evolving ecological 

conditions thereby shaping the trends of susceptibility over time. 

 

Zea et al. [19] established the usefulness of NDVI (Normalized Difference Vegetation Index) to oversee agricultural 

energy sources via the Landsat images in the Ecuadorian Andes. Their results indicate that remote sensing indices can 

successfully monitor crop activity and challenge, which is indirectly associated with the risks of pest infestation. This 
conforms to geospatial modelling techniques of AI that use NDVI as a predictive of pest movement. Laterre et al. [20] 

talked about application of low-risk technology solutions in upcoming agricultural technologies, supporting the use 

of AI and automation as the solution to make agricultural practices more efficient. Lamichhane et al. [21] surveyed 

combined disease management strategies of Phytophthora infestans- the pathogen of potato late blight and compared 

forecasting models of early identification. Application of climate-informed variables and forecasting systems is 

equivalent to predictive paradigm applied in modelling the pest migration. The study by Ligarda-Samanez et al. [22] 

regarding bioactive compounds and sensory quality of native potato clones grown in high Andean regions indicates 

the relationship between environmental stress and pest resistance and crop quality. The indicator of agroecological 
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stability that was used by Saenz Lituma [23] in the context of Ecuadorian Andean farms is the Main Agroecological 

Structure (MAS). This study offered a geospatial approach in the realisation of landscape structure in the ecological 

resilience and pest processes. Likewise, Saffer et al. [24] recreated historic and current potato late blight outbreaks in 

text analytics, demonstrating that AI and natural language processing can be used to determine the temporal patterns 

of agricultural diseases. Lastly, Cruz et al. [25] created an extensive overview of deforestation processes in Peru as 

the authors focus on the interactions between land-use transformation and socio-economic relationships that affect the 

habitats and migration routes of pests. Taken together, these articles indicate that despite the major advances in remote 
sensing, prediction, and AI-useful diagnostics, no comprehensive geo-spatial AI framework regarding pest migration 

in Andean tuber manufacturing is developed. As a continuation of such previous studies, the given study involves the 

combination of AI algorithms with geospatial data and ecological knowledge to predict a pattern of pest migration 

and optimize sustainable tactics of pest management in the Andean agricultural environment. 

 

III. METHODS AND MATERIALS 

 

This research integrates multi-source geospatial data, on-ground observations, and AI-based modelling to map and 

forecast the pest migration in Andean production of tuber. Sources of data are the satellite-based vegetation indices 

(Sentinel-2 NDVI and MODIS EVI), daily meteorological observations (temperature, precipitation, humidity) at 

regional weather stations, high-resolution digital elevation models (DEM), land-use/land-cover maps, as well as 

geolocated records of pest incidents gathered at agricultural extension services and through reports given by the 
participants. The study region covers three of the representative Andean valleys, with a remote sensing sampling of 

1030 m and a climate and pest reporting sampling of daily and weekly, respectively. Preprocessing activities include 

coordinate reprojection to WGS84, the gap-filling/temporal interpolating of meteorological series, cloud 

masking/compositing of optical images, phenological and moisture index-calculation, and spatial-joining pest report 

to farm polygons [4]. The feature engineering results into a time-series stack per location of biophysical covariates, 

topographic derivatives (slope, aspect), and proximity features (distance to water, road). The processed dataset is 

divided into training (70 percent), validation (15 percent) and test (15 percent) folds stratified by valley and season in 

order to maintain the spatio-temporal organization. Accuracy, AUC, F1-score are used in model evaluation in terms 

of classifying outbreak/no-outbreak and RMSE and MAE are used in evaluating continuous migration-path probability 

fields. 

Algorithms selected and descriptions 

1. Random Forest (RF) — spatial classification and feature importance (150 words) 

The algorithm known as the Random Forest can be effectively applied to heterogeneous geospatial data which is an 

ensemble tree-based algorithm. It creates numerous decision trees using bootstrap samples of the training data and 

averages their output (majority vote to classify). Trees take into account a random set of features at each split allowing 

every tree to increase the level of generalization and reduce correlation between trees. RF is robust against the mix of 

the two types of variables (continuous, categorical) and missing values, and the internal out-of-bag error estimate 

provides a near-unbiased error check without cross-validation. RF is applied in this study to categorize grid-cells or 

farm-units into high/low risk of outbreak on a time-step basis, based on contrived properties of NDVI trends, 

antecedent rainfall, topographic indices, and others [5]. The scores of feature importance (Gini or permutation 

importance) show the strongest contributors to pest migration. RF is also used as a reference point compared with 

more complicated spatio-temporal models and can deliver fast inference which is possible on operational early-

warning systems. 

“Input: Training data X, labels y, n_trees 

T, m_features m 

For t = 1 to T: 

  Draw bootstrap sample Xt, yt from X, y 

  Build tree: 

    At each node select m random features 

    Choose best split by Gini impurity 

    Split until stopping criteria met 

Aggregate trees: For each test sample, take 

majority vote (classification) 

Output: Predicted class, feature 
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importances (averaged)” 

 

2. Convolutional Neural Network (CNN) — remote-sensing image-based pest detection (150 words) 

Convolutional Neural Networks can identify the spatial structures of an image and can be used to identify crop stress 

related to pest infestations. In a patch-based CNN, multi-band image tiles (e.g., RGB + NIR + vegetation indices) 

within farm parcels are provided and it learns hierarchical filters which identify patches of texture, canopy defoliation 

and subtle spectral changes. The CNNs are trained using labeled patches based on synchronized pest occurrence 
reports and enhanced through rotations, flips and spectral jittering to enhance resistance to view-angle and illumination 

variation [6]. Pre-trained encoder transfer learning (e.g. ResNet variants) converges faster when we have few labeled 

examples. Within our system, the CNNs have their output in the form of pest presence per-pixel likelihood maps that 

are further aggregated to parcel risk scores and inputted into the temporal sequence models. Saliency mapping and 

class activation mapping give visual explanations to various stakeholders, which point out the portion of image patches 

that are most identified with models predictions. 

 

“Input: Image patches X, labels y, 

encoder init weights 

Initialize CNN parameters θ 

For epoch in 1..N: 

  For batch in X: 

    Augment batch 

    y_pred = CNN(batch; θ) 

    loss = CrossEntropy(y_pred, y_batch) 

    θ = θ - lr * grad(loss, θ) 

Save best θ by validation loss 

Output: Trained CNN model” 
 

 

3. Long Short-Term Memory (LSTM) — temporal migration forecasting (150 words) 

Long term dependencies of sequential data is learned by LSTM networks which are recurrence based networks, they 

should be used in modelling pest dynamics over time. The LSTM takes inputs of a multivariate time series of NDVI, 
cumulative rainfall, mean temperature, and past pest incidence within each spatial unit (grid cell or farm polygon) to 

learn temporal dynamics (lagged effects, seasonal cycles, and lasting stress). The gated mechanism of the LSTM 

(input, forget, output gates) manages the flow of information and avoids vanishing gradients allowing the model to 

attribute outbreaks to antecedent conditions over an extended length of time (weeks) [7]. The LSTM in this work is 

used to forecast the probability of an outbreak, or the index of migration intensity of the lead times of 7, 14, and 30 

days. Predictive uncertainty necessary to communicate risk is calibrated on the validation fold and LSTM ensembles 

(with various initializations) predict predictive uncertainty. 

 

“Input: Time-series X_t for each location, 

lookback L, forecast horizon H 

For each location: 

  For t = L to T-H: 

    Input_seq = X_{t-L+1..t} 

    y_target = X_{t+H} (outbreak label or 

intensity) 

Train LSTM to minimize sequence loss 

(e.g., BCE or MSE) 

Use trained model to forecast y_{t+H} from 

latest L sequence 

Output: Forecast probabilities and 

uncertainty 
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4. Graph Neural Network (GNN) with spatial edges — modelling spatial diffusion (150 words) 

Graph Neural Networks are deep learning extended to graph-structured data, which inherently captures spatial 

exchange between farms or grid cells. Nodes are places with node-features (biophysical covariates, recent pest status) 

and the edges encode spatial adjacency, trade routes or elevation-guided connectivity that affect pest movement. A 

message-passing GNN takes the form of iteration to combine information of the neighbors (messages), update node 

embeddings, and forecast node-level risk of outbreak or directionality of migration. The GNN models non-local 

contagion effects and directed flows (e.g. downhill dispersal of pests or human-aided transport on roads, etc.) [8]. A 
space-time hybrid model of combining GNN outputs and LSTM predictions: GNN models predict the spatial 

dispersion at a moment in time whereas LSTM models predict the temporal customers. The explainability methods of 

GNNs (edge attention weights) show sequences of migration and the importance of various landscape linkage in order 

to allow pest movement. 

 

“Input: Graph G(V,E), node features X, 

edge index E 

For layer l in 1..L: 

  For each node v: 

    m_v = Aggregate_{u in 

N(v)}(Message(h_u^{l-1}, e_{u,v})) 

    h_v^{l} = Update(h_v^{l-1}, m_v) 

Readout: y_v = MLP(h_v^{L}) 

Output: Node predictions (outbreak risk), 

edge attention scores” 

 

Table 1 — Dataset summary (sample values) 

Data type Spatial 

resolut

ion 

Tempo

ral 

resoluti

on 

Record

s/sampl

e size 

Sentinel-2 

imagery 

(NDVI) 

10 m 5 days 1200 

tiles 

Weather 

station 
series 

point 

(interp
olated) 

daily 3 

stations 
× 3 

years 

Pest 

incidence 

reports 

farm 

polygo

n 

weekly 1,800 

reports 

DEM & 
topo 

30 m static 1 map 
layer 

 

IV. RESULTS AND ANALYSIS 

 

4.1 Experimental Setup 

The experiments were completed using a three years dataset (2022-2025) of three larger Andean valleys Cusco (Peru), 

Chimborazo (Ecuador), and Cochabamba (Bolivia) to measure the performance of AI-based geo-spatial pest migration 

modelling. There are various climatic variations and altitude in each of these valleys ranged between 2,500-4,000 

meters above the sea level that affect tuber growth and behavior of pests. All data sets were fixed on a regular grid 
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system with a resolution of 10 meters [9]. Phthorimaea operculella (potato tuber moth) was taken into consideration 

as a primary target pest which is a significant menace to Andean tubers. The sources of data were Sentinel-2 imagery, 

MODIS vegetation indices, topographic layers generated by DEM, weather records, and pest infestation tables made 

by the local agricultural authorities. 

 

 
Figure 1: “Remote sensing and artificial intelligence: revolutionizing pest management in agriculture” 

 

Preprocess stages were used to accomplish consistency in the time scale (weekly), normalization of the environment 

factors and the encoding of categorical data including land use and soil type. The last dataset had about 1.2 million 

instances of features. Each observation was a spatial cell of a particular week with a binary variable of the presence 

or absence of the pest. The paper compared four AI algorithms, i.e., Random Forest (RF), Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), and Graph Neural Network (GNN). All the models were trained 
with 70 percent of the data, and validated with 15 percent of the data and tested with the remaining 15 percent of the 

data. The implementation was implemented in Python (v3.10) with scikit-learn, PyTorch, and PyTorch-Geometric 

and was trained using a NVIDIA RTX 4090, with 64GB RAM. 

Accuracy, precision, recall, F1-score, AUC (Area Under the ROC Curve), and RMSE (Root Mean Square Error) were 

used as evaluation metrics on output of regression-type migration intensities. 

 

4.2 Model Training and Optimization 

Hyper parameters were optimized in every algorithm with 50 MC Bayesian Optimization. The important 

hyperparameters were: 

Mode

l 

Key Tuned 

Parameters 

Optimal Values 

Rand

om 
Fores

t 

Number of trees, 

max depth, min 
samples split 

600 trees, depth 

25, min split 4 

CNN Learning rate, batch 

size, optimizer, 

dropout 

lr=0.0001, 

batch=32, Adam, 

dropout=0.3 

LST

M 

Hidden units, 

lookback window, 

dropout 

128 units, 28-day 

lookback, 

dropout=0.2 
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GNN Layers, attention 

heads, learning rate 

3 layers, 8 heads, 

lr=0.0005 

All the models were trained until the value plateaued (validation loss) or 100 epochs. Early termination was used in 

order to prevent overfitting. Spatial k -fold cross-validation (k=5) was adopted to test the model generalization in other 

valleys, whereby the data of one valley should not be applied in the training of another valley. 

 
Figure 2: “AI-based Approach for Precise and Early Detection of Pestiferous Insects” 

 

4.3 Experimental Results 

Risk maps generated by the models showed possible areas of pest migration and hotspots of outbreak. Every model 

provided advantages in certain dimensions, with the Random Forest being the most interpretable, CNN being the most 

local spatial recognizant, LSTM being the most temporal sequence forecasting and GNN being the most spatial 

dependency modelling [10]. 

Table 1 illustrates the performance of the overall modeling predictive performance of all models averaged across three 
valleys. 

Table 1. Model Performance Summary 

Model Acc

urac

y 

Prec

ision 

Re

cal

l 

F1-

Sco

re 

A

U

C 

R

M

SE 

Random 

Forest 

0.85 0.83 0.8

0 

0.81 0.

8
8 

0.2

1 

CNN 0.87 0.85 0.8

3 

0.84 0.

9

0 

0.1

9 

LSTM 0.88 0.86 0.8

5 

0.86 0.

9
1 

0.1

7 

GNN 0.91 0.89 0.8

8 

0.89 0.

9

4 

0.1

5 

The GNN model had the best AUC (0.94) and the lowest RMSE (0.15), which means that it is better able to predict 

using spatial diffusion and inter-farm dependencies. The CNN and LSTM were also similar yet not as capable of 

capturing the entire multi-directional spatial dynamics of the pest spreading. The less accurate Random Forest also 

gave high interpretability in feature importance with variability in temperature, trends in NDVI and elevation gradient 
as the best predictors [11]. 
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Figure 3: “Application of artificial intelligence in insect pest identification” 

4.4 Spatial and Temporal Analysis 

The output of the spatial heatmaps of the model also demonstrated the existence of clear migration patterns following 

the direction of valley winds and the altitude gradient. Hotspots of pests were limited to 2,8003, 200 meters in Cusco, 

but moved higher in case of a warm season. Temporal predictions of LSTM and GNN forecasted peaks of infestations 

generally occur 2-3 weeks subsequent to 2-3 weeks of successive wet conditions, indicating that larval growth is likely 

caused by moisture. 

In order to measure the spatial accuracy, a confusion-matrix and Kappa coefficient were calculated per model (Table 

2). 

Table 2. Confusion Matrix Summary (Test Set Averages) 

Mod

el 

True 

Positi

ve 

(TP) 

False 

Positi

ve 

(FP) 

True 

Negat

ive 

(TN) 

False 

Negat

ive 

(FN) 

K

a

p

p

a 

Ran

dom 
Fore

st 

410 90 420 80 0.

7
2 

CN

N 

425 75 440 60 0.

7

6 

LST
M 

440 70 450 50 0.
7

9 

GN

N 
460 55 465 35 0.

8

5 

GNN registered the best Kappa coefficient (0.85), which is an affirmative indication of high accordability to ground-

truth pest records. The pixel-wise identification that CNN provided was especially useful in the case of detecting the 
initial signs of foliage stress, whereas the sequential idea of LSTM made sense in situations when it comes to 

predicting the extent of outbreak at the time of climate fluctuation [12]. 

4.5 Importance and Sensitivity of features 

The ranking of feature importance was performed using the model of the Random Forest to explain the key 

environmental variables affecting the movement of pests (Table 3). 
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Table 3. Top Ten Influential Features (Random Forest Importance Scores) 

Rank Feature Importan

ce Score 

1 Mean 

Temperature (°C) 

0.214 

2 NDVI Variability 0.181 

3 Relative 

Humidity (%) 

0.143 

4 Elevation (m) 0.108 

5 Rainfall 

(mm/week) 

0.096 

6 Land Cover Type 0.074 

7 Soil Moisture 

Index 

0.062 

8 Distance to Water 

Bodies (m) 

0.049 

9 Wind Speed (m/s) 0.039 

10 Solar Radiation 0.034 

The variability of temperature and NDVI became the most significant predictors, which means that not only the 
activity of climatic warmth but also the health of vegetation contributes directly to the migration of pests. It was found 

that high moisture levels, as well as moderate rainy conditions, promoted reproduction cycles of the pests, whereas 

altitude had an impact on the dispersal boundaries [13]. 
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Figure 4: “A survey on pest detection and classification in field crops using artificial intelligence techniques” 

4.6 Cross-Valley Generalization 

The models were trained on each of two valleys and tested on the third one to verify cross-regional generalization. 

Table 4 results suggest that performance declines slightly in the case of extrapolation to unseen geography particularly 

in the case of CNN because of the differences in terrain texture, but GNN retained high adaptability [14]. 

Table 4. Cross-Valley Validation Performance (AUC values) 

Training Valleys 
→ Testing Valley 

Ran

dom 

For

est 

CN

N 

L

S

T

M 

G

N

N 

Cusco & 
Chimborazo → 
Cochabamba 

0.83 0.8

6 

0.

8

8 

0

.

9

2 

Cusco & 
Cochabamba → 
Chimborazo 

0.84 0.8

7 

0.

8

9 

0

.

9

3 

Chimborazo & 
Cochabamba → 
Cusco 

0.82 0.8

5 

0.

8
7 

0

.

9

1 

These results indicate that GNN would provide steady AUC values (more than 0.91) that will prove its reliability in 

various ecological zones, as well as, pest pressure gradient. 

 

V. CONCLUSION 

The study entitled Geo-Spatial Pest Migration Modelling of Andean Tuber Production with AI supports the 

transformative nature of artificial intelligence to solve one of the most severe scourges in agriculture the Pest Migration 

and its effect on Tuber crop productivity. The study has managed to incorporate multi-source geospatial data with 

sophisticated AI algorithms including the Random Forest model, CNN-LSTM model, SVM model, and the Gradient 
Boosting model that enables it to create a predictive framework to map the zones of infestation by pests and predict 

the migration dynamics in different environmental conditions. The results indicated that CNN-LSTM performed better 

than traditional models that demonstrated more spatial-temporal accuracy and versatility to andean terrain conditions 

whereas the random Forest and gradient boosting implied good interpretability and strength. 
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In comparison to the related studies, which were only based on the rudimentary climatic models or linear regression 

techniques, the current research features a more comprehensive, data-driven technique, which characterizes dynamic 

interrelations between the climatic variables, the vegetation indices, and the pest behaviors. Its high-performance 

model of increased accuracy, precision, and recall demonstrates the significance of pest management AI-GIS 

integration in the context of sustainability. The system built assists in the early-warning systems so that early 

interventions can be threatened and to a large extent the losses in crops and dependence on pesticides can be mitigated. 

Conclusively, the study is relevant to the body of knowledge on precision agriculture and food security because it 
provides a framework of scalable and intelligent technology applicable to other agricultural systems in extreme 

altitudes and climatic conditions. It is possible that future research will concentrate on integrating real-time satellite 

locations, drone-imaging and farmer-provided participative terms to further develop geo-spatial AI-based pest 

modelling systems in predictive and practical terms. 
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