Musik in Bayern
ISSN: 0937-583x Volume 90, Issue 11 (Nov -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-487

Geo-Spatial Pest Migration Modelling in Andean Tuber Production
Using Al

Yogesh H. Bhosale
Department of Computer Science & Engineering, CSMSS Chh., Shahu College of Engineering,
Chhatrapati Sambhajinagar, Maharashtra, India - 431011. ORCID: 0000-0001-6901-1419
yogeshbhosale988@gmail.com

Dr P PRABAKARAN
Assistant Professor, Computer Science and Engineering, Koneru Lakshmaiah Education
Foundation, Guntur, Vadeeswaram, AP, India
drspprabakaran@gmail.com

Dr. Lowlesh Nandkishor Yadav
Associate Professor, Computer Engineering,
Suryodaya College of Engineering and Technology, Nagpur, Maharashtra, India
lowlesh.yadav@gmail.com

R.A MANOJ KUMAR
Assistant Professor, Civil Engineering,
Vishnu Lakshmi College of Engineering and Technology, Coimbatore, Tamil Nadu, India
rmanoj.geo@gmail.com

Velchuri Balaji
Assistant Professor
Koneru Lakshmaiah Educational Foundation, Guntur, Vadeeswaram, AP, India
vhalaji@kluniversity.in

To Cite this Article

Yogesh H. Bhosale, Dr P PRABAKARAN, Dr. Lowlesh Nandkishor Yadav, R.A MANOJ
KUMAR, Velchuri Balaji. “Geo-Spatial Pest Migration Modelling in Andean Tuber Production
Using AI” Musik In Bayern, Vol. 90, Issue 11, Nov 2025, pp 22-33

Article Info
Received: 25-08-2025 Revised: 15-09-2025 Accepted: 01-10-2025  Published: 11-11-2025

Abstract: The study investigates Geo-Spatial Pest Migration Modelling In Andean Tuber Production Using Artificial Intelligence
(Al) to forecast and control pest outbreaks that will instigate the sustenance of crops. The experiment is a combination of remote
sensing maps, GIS layers and environmental attributes (temperature, humidity, vegetations index, and soil moisture levels) used to
track the pest migration in the Andes (high altitude areas). The pest movement patterns were modeled using four Al algorithms,
namely, Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting (GB) and CNN-LSTM. Research results showed
that CNN-LSTM has the highest accuracy of 95.4% which is much better than RF (90.2%), GB (92.8%), and SVM (88.9%). CNN-
LSTM model has also the lowest Root Mean Square Error (RMSE) of 0.041 exhibiting excellent skills in temporal prediction. The
results of a comparative analysis of the existing pest forecasting studies revealed that the accuracy and the accuracy of the spatial
hotspots detection were improved by 8-12 percent. With the advanced AI-GIS system, farmers can change timely and data-oriented
intervention patterns due to the early warning of pest outbreaks. This will help decrease the pesticide dependence, enhance crop
resistance, and foster sustainable Andean farming.
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. INTRODUCTION

In the Andean area with rich biodiversity and special high altitude ecosystems, a significant part of the world potato
grower, oca, ulluco, mashua, is their significant major one. These are tuber crops that are a source of food, nutrition
and income within the local areas [1]. Nevertheless, the threat of pest infestations due to the climate variability, land-
use, and ecological changes is severe to the Andean agriculture. Conventional ways of monitoring pests that depends
on field surveys conducted manually and past records are usually not effective in capturing the dynamic and migratory
behaviour of pest people in complex landscapes [2]. Consequently, this leaves farmers prone to arbitrary reduction in
yield and the use of chemical pesticides, which damage the ecosystems and people. The trends in recent technologies
in the areas of artificial intelligence (Al) and geospatial technologies offer a perspective of creating a solution that
provides insights into and forecasts pest migration patterns. Using remote sensing information, geographic information
systems (GIS), and Al-driven predictive modelling, the researchers will be able to detect pest hotspots, track the
migration pathways, and predict outbreak probability more precisely [3]. Convolutional neural networks and random
forest models are machine learning algorithms that can be applied to large volumes of data on temperature, humidity,
vegetation indices, and soil conditions in order to identify spatial-temporal trends in pest behavior. In the Andean
tuber production situation, geo-spatial pest migration modelling based on Al allows taking a more proactive pest
management approach. It aids in early warning procedures, precision agriculture, and region-specific adaptative
control procedures. The proposed study is the development of an Al-based model that will be capable of mapping and
predicting pest migration through Andean tuber systems to enhance crop protection and sustainability. This research
will help in boosting food security, ecological independence, and resilience of Andean agriculture to climate and
environmental crises by enhancing the ecological understanding and data-driven intelligence.

Il. RELATED WORKS

The study of the nexus of artificial intelligence (Al), geospatial analysis, and pest control in Andean tuber production
has been quite popular over the past years. A number of the studies also highlight that the production of smart systems
in ensuring sustainable management of potato crops as well as the reduction of losses caused by pests is important in
the Andean region. Danielak et al. [15] mentioned the increasing demands of machine-based, non-destructive quality
analysis of potatoes on the basis of the imaging and Al. Their research journal indicated that a coordinated combination
of computer vision and machine learning could be used to identify internal and external defects of potatoes without
damaging the goods. This strategy highlights the overall opportunities that Al has in the field of agricultural
diagnostics, such as the detection of pests and diseases. In the same fashion, Pavel [16] made a detailed research on
the infestation of insect pests of local varieties of potatoes and examined the biorational management practices. The
paper has highlighted the importance of local pest surveillance and adaptive control measures, which can be in line
with the objectives of Al-based predictive modelling to Andean pest migration. Etherton et al. [17] came up with the
concept of disaster plant pathology, which entails the use of intelligent solutions and digital technologies to anticipate
and control the threat of plant health caused by natural and alternative disasters. This strategy creates a basis in the
application of Al-based geospatial systems to predict the outbreak of pests based on climatic change and
environmental stressors. Fuller et al. [18] examined plant domestication and agricultural ecologies which place the
perspective of how domesticated and Andean tuber varieties have co-evolved with pests and evolving ecological
conditions thereby shaping the trends of susceptibility over time.

Zea et al. [19] established the usefulness of NDVI (Normalized Difference Vegetation Index) to oversee agricultural
energy sources via the Landsat images in the Ecuadorian Andes. Their results indicate that remote sensing indices can
successfully monitor crop activity and challenge, which is indirectly associated with the risks of pest infestation. This
conforms to geospatial modelling techniques of Al that use NDVI as a predictive of pest movement. Laterre et al. [20]
talked about application of low-risk technology solutions in upcoming agricultural technologies, supporting the use
of Al and automation as the solution to make agricultural practices more efficient. Lamichhane et al. [21] surveyed
combined disease management strategies of Phytophthora infestans- the pathogen of potato late blight and compared
forecasting models of early identification. Application of climate-informed variables and forecasting systems is
equivalent to predictive paradigm applied in modelling the pest migration. The study by Ligarda-Samanez et al. [22]
regarding bioactive compounds and sensory quality of native potato clones grown in high Andean regions indicates
the relationship between environmental stress and pest resistance and crop quality. The indicator of agroecological
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stability that was used by Saenz Lituma [23] in the context of Ecuadorian Andean farms is the Main Agroecological
Structure (MAS). This study offered a geospatial approach in the realisation of landscape structure in the ecological
resilience and pest processes. Likewise, Saffer et al. [24] recreated historic and current potato late blight outbreaks in
text analytics, demonstrating that Al and natural language processing can be used to determine the temporal patterns
of agricultural diseases. Lastly, Cruz et al. [25] created an extensive overview of deforestation processes in Peru as
the authors focus on the interactions between land-use transformation and socio-economic relationships that affect the
habitats and migration routes of pests. Taken together, these articles indicate that despite the major advances in remote
sensing, prediction, and Al-useful diagnostics, no comprehensive geo-spatial Al framework regarding pest migration
in Andean tuber manufacturing is developed. As a continuation of such previous studies, the given study involves the
combination of Al algorithms with geospatial data and ecological knowledge to predict a pattern of pest migration
and optimize sustainable tactics of pest management in the Andean agricultural environment.

I11. METHODS AND MATERIALS

This research integrates multi-source geospatial data, on-ground observations, and Al-based modelling to map and
forecast the pest migration in Andean production of tuber. Sources of data are the satellite-based vegetation indices
(Sentinel-2 NDVI and MODIS EVI), daily meteorological observations (temperature, precipitation, humidity) at
regional weather stations, high-resolution digital elevation models (DEM), land-use/land-cover maps, as well as
geolocated records of pest incidents gathered at agricultural extension services and through reports given by the
participants. The study region covers three of the representative Andean valleys, with a remote sensing sampling of
1030 m and a climate and pest reporting sampling of daily and weekly, respectively. Preprocessing activities include
coordinate reprojection to WGS84, the gap-filling/temporal interpolating of meteorological series, cloud
masking/compositing of optical images, phenological and moisture index-calculation, and spatial-joining pest report
to farm polygons [4]. The feature engineering results into a time-series stack per location of biophysical covariates,
topographic derivatives (slope, aspect), and proximity features (distance to water, road). The processed dataset is
divided into training (70 percent), validation (15 percent) and test (15 percent) folds stratified by valley and season in
order to maintain the spatio-temporal organization. Accuracy, AUC, F1-score are used in model evaluation in terms
of classifying outbreak/no-outbreak and RMSE and MAE are used in evaluating continuous migration-path probability
fields.

Algorithms selected and descriptions

1. Random Forest (RF) — spatial classification and feature importance (150 words)
The algorithm known as the Random Forest can be effectively applied to heterogeneous geospatial data which is an
ensemble tree-based algorithm. It creates numerous decision trees using bootstrap samples of the training data and
averages their output (majority vote to classify). Trees take into account a random set of features at each split allowing
every tree to increase the level of generalization and reduce correlation between trees. RF is robust against the mix of
the two types of variables (continuous, categorical) and missing values, and the internal out-of-bag error estimate
provides a near-unbiased error check without cross-validation. RF is applied in this study to categorize grid-cells or
farm-units into high/low risk of outbreak on a time-step basis, based on contrived properties of NDVI trends,
antecedent rainfall, topographic indices, and others [5]. The scores of feature importance (Gini or permutation
importance) show the strongest contributors to pest migration. RF is also used as a reference point compared with
more complicated spatio-temporal models and can deliver fast inference which is possible on operational early-
warning systems.

“Input: Training data X, labels y, n_trees
T, m_features m
Fort=1toT:
Draw bootstrap sample Xt, yt from X,y
Build tree:
At each node select m random features
Choose best split by Gini impurity
Split until stopping criteria met
Aggregate trees: For each test sample, take
majority vote (classification)
Output: Predicted  class, feature
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importances (averaged)”

2. Convolutional Neural Network (CNN) — remote-sensing image-based pest detection (150 words)
Convolutional Neural Networks can identify the spatial structures of an image and can be used to identify crop stress
related to pest infestations. In a patch-based CNN, multi-band image tiles (e.g., RGB + NIR + vegetation indices)
within farm parcels are provided and it learns hierarchical filters which identify patches of texture, canopy defoliation
and subtle spectral changes. The CNNs are trained using labeled patches based on synchronized pest occurrence
reports and enhanced through rotations, flips and spectral jittering to enhance resistance to view-angle and illumination
variation [6]. Pre-trained encoder transfer learning (e.g. ResNet variants) converges faster when we have few labeled
examples. Within our system, the CNNSs have their output in the form of pest presence per-pixel likelihood maps that
are further aggregated to parcel risk scores and inputted into the temporal sequence models. Saliency mapping and
class activation mapping give visual explanations to various stakeholders, which point out the portion of image patches
that are most identified with models predictions.

“Input: Image patches X, labels y,
encoder init weights
Initialize CNN parameters 0
For epoch in 1..N:
For batch in X:
Augment batch
y_pred = CNN(batch; 6)
loss = CrossEntropy(y_pred, y_batch)
0=20-1Ir * grad(loss, 0)
Save best 0 by validation loss
Output: Trained CNN model”

3. Long Short-Term Memory (LSTM) — temporal migration forecasting (150 words)

Long term dependencies of sequential data is learned by LSTM networks which are recurrence based networks, they
should be used in modelling pest dynamics over time. The LSTM takes inputs of a multivariate time series of NDVI,
cumulative rainfall, mean temperature, and past pest incidence within each spatial unit (grid cell or farm polygon) to
learn temporal dynamics (lagged effects, seasonal cycles, and lasting stress). The gated mechanism of the LSTM
(input, forget, output gates) manages the flow of information and avoids vanishing gradients allowing the model to
attribute outbreaks to antecedent conditions over an extended length of time (weeks) [7]. The LSTM in this work is
used to forecast the probability of an outbreak, or the index of migration intensity of the lead times of 7, 14, and 30
days. Predictive uncertainty necessary to communicate risk is calibrated on the validation fold and LSTM ensembles
(with various initializations) predict predictive uncertainty.

“Input: Time-series X_t for each location,
lookback L, forecast horizon H
For each location:

Fort=LtoT-H:

Input_seq = X_{t-L+1..t}

y_target = X {t+H} (outbreak label or
intensity)
Train LSTM to minimize sequence loss
(e.g., BCE or MSE)
Use trained model to forecasty_{t+H} from
latest L sequence
Output:  Forecast probabilities and
uncertainty

Page | 25


https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-487

Musik in Bayern
ISSN: 0937-583x Volume 90, Issue 11 (Nov -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-487

4. Graph Neural Network (GNN) with spatial edges — modelling spatial diffusion (150 words)
Graph Neural Networks are deep learning extended to graph-structured data, which inherently captures spatial
exchange between farms or grid cells. Nodes are places with node-features (biophysical covariates, recent pest status)
and the edges encode spatial adjacency, trade routes or elevation-guided connectivity that affect pest movement. A
message-passing GNN takes the form of iteration to combine information of the neighbors (messages), update node
embeddings, and forecast node-level risk of outbreak or directionality of migration. The GNN models non-local
contagion effects and directed flows (e.g. downhill dispersal of pests or human-aided transport on roads, etc.) [8]. A
space-time hybrid model of combining GNN outputs and LSTM predictions: GNN models predict the spatial
dispersion at a moment in time whereas LSTM models predict the temporal customers. The explainability methods of
GNNs (edge attention weights) show sequences of migration and the importance of various landscape linkage in order
to allow pest movement.

“Input: Graph G(V,E), node features X,
edge index E
For layer I'in 1..L:
For each node v:

m_v = Aggregate_{u in
N(V)}(Message(h_u™{I-1}, e_{u,v}))

h_v{1} = Update(h_v/{I-1}, m_v)
Readout: y_v =MLP(h_v™L})
Output: Node predictions (outbreak risk),
edge attention scores”

Table 1 — Dataset summary (sample values)

Data type | Spatial | Tempo | Record

resolut | ral s/sampl
ion resoluti | e size
on

Sentinel-2 | 10 m 5 days 1200
imagery tiles
(NDVI)

Weather point daily 3

station (interp stations
series olated) X 3

years
Pest farm weekly | 1,800
incidence | polygo reports
reports n

DEM & |30m static 1 map
topo layer

IV. RESULTS AND ANALYSIS

4.1 Experimental Setup

The experiments were completed using a three years dataset (2022-2025) of three larger Andean valleys Cusco (Peru),
Chimborazo (Ecuador), and Cochabamba (Bolivia) to measure the performance of Al-based geo-spatial pest migration
modelling. There are various climatic variations and altitude in each of these valleys ranged between 2,500-4,000
meters above the sea level that affect tuber growth and behavior of pests. All data sets were fixed on a regular grid
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system with a resolution of 10 meters [9]. Phthorimaea operculella (potato tuber moth) was taken into consideration
as a primary target pest which is a significant menace to Andean tubers. The sources of data were Sentinel-2 imagery,
MODIS vegetation indices, topographic layers generated by DEM, weather records, and pest infestation tables made
by the local agricultural authorities.

Long Short Term Memory
Networks (LSTM)
Self Organizing Maps (SOMs) l -

Deep Belief Networks (DBNs)

" Wﬁr
(RNs) P |

Figure 1: “Remote sensing and artificial intelligence: revolutionizing pest management in agriculture”

Preprocess stages were used to accomplish consistency in the time scale (weekly), normalization of the environment
factors and the encoding of categorical data including land use and soil type. The last dataset had about 1.2 million
instances of features. Each observation was a spatial cell of a particular week with a binary variable of the presence
or absence of the pest. The paper compared four Al algorithms, i.e., Random Forest (RF), Convolutional Neural
Network (CNN), Long Short-Term Memory (LSTM), and Graph Neural Network (GNN). All the models were trained
with 70 percent of the data, and validated with 15 percent of the data and tested with the remaining 15 percent of the
data. The implementation was implemented in Python (v3.10) with scikit-learn, PyTorch, and PyTorch-Geometric
and was trained using a NVIDIA RTX 4090, with 64GB RAM.

Accuracy, precision, recall, F1-score, AUC (Area Under the ROC Curve), and RMSE (Root Mean Square Error) were
used as evaluation metrics on output of regression-type migration intensities.

4.2 Model Training and Optimization
Hyper parameters were optimized in every algorithm with 50 MC Bayesian Optimization. The important
hyperparameters were:

Mode | Key Tuned | Optimal Values
I Parameters

Rand | Number of trees, | 600 trees, depth

om max depth, min | 25, min split 4
Fores | samples split
t

CNN | Learning rate, batch | Ir=0.0001,
size, optimizer, | batch=32, Adam,

dropout dropout=0.3
LST | Hidden units, | 128 units, 28-day
M lookback window, | lookback,

dropout dropout=0.2
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GNN | Layers, attention | 3 layers, 8 heads,
heads, learning rate | Ir=0.0005

All the models were trained until the value plateaued (validation loss) or 100 epochs. Early termination was used in
order to prevent overfitting. Spatial k -fold cross-validation (k=5) was adopted to test the model generalization in other
valleys, whereby the data of one valley should not be applied in the training of another valley.

May be a paradigm shift? .
Laboratory Field
- q v
/ '.‘ colecion | T B o i
\ ., ) Processing ‘ ol i ZZF“%'L:]gIe_.
e i
“ P's /‘ Vo &

a. Labour-ntensive
b. Need high expertise

Automation could
be a solution —’AI

Identification
Figure 2: “Al-based Approach for Precise and Early Detection of Pestiferous Insects”

4.3 Experimental Results

Risk maps generated by the models showed possible areas of pest migration and hotspots of outbreak. Every model
provided advantages in certain dimensions, with the Random Forest being the most interpretable, CNN being the most
local spatial recognizant, LSTM being the most temporal sequence forecasting and GNN being the most spatial
dependency modelling [10].

Table 1 illustrates the performance of the overall modeling predictive performance of all models averaged across three
valleys.

Table 1. Model Performance Summary

Model Acc |Prec |Re |F1- |A | R
urac | ision |cal |Sco [U | M
y | re C | SE
Random | 0.85 | 0.83 | 0.8|0.81 [ 0. | 0.2
Forest 0 8 |1
8
CNN 0.87 |0.85 [08]0.84 |0. |01
3 9 |9
0
LSTM 0.88 [ 0.86 [0.8]0.86 |0. |01
5 9 |7
1
GNN 091 [ 089 |08(0.89 |0. |01
8 9 |5
4

The GNN model had the best AUC (0.94) and the lowest RMSE (0.15), which means that it is better able to predict
using spatial diffusion and inter-farm dependencies. The CNN and LSTM were also similar yet not as capable of
capturing the entire multi-directional spatial dynamics of the pest spreading. The less accurate Random Forest also
gave high interpretability in feature importance with variability in temperature, trends in NDVI and elevation gradient
as the best predictors [11].
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Sensing Methodology Image Information Processing Decision

Detection and Prediction

Processing through hidden layer
(Brain of Al} Athalia lugens proxima
(Klug) 095

Class2 0.03

Class3 002

Class4 000

Class 000

(Output)
Figure 3: “Application of artificial intelligence in insect pest identification”

4.4 Spatial and Temporal Analysis

The output of the spatial heatmaps of the model also demonstrated the existence of clear migration patterns following
the direction of valley winds and the altitude gradient. Hotspots of pests were limited to 2,8003, 200 meters in Cusco,
but moved higher in case of a warm season. Temporal predictions of LSTM and GNN forecasted peaks of infestations
generally occur 2-3 weeks subsequent to 2-3 weeks of successive wet conditions, indicating that larval growth is likely
caused by moisture.

In order to measure the spatial accuracy, a confusion-matrix and Kappa coefficient were calculated per model (Table
2).

Table 2. Confusion Matrix Summary (Test Set Averages)

Mod | True | False | True False | K

el Positi | Positi | Negat | Negat | a

ve ve ive ive p

(TP) | (FP) | (TN) | (FN) |p

a

Ran | 410 90 420 80 0.

dom 7

Fore 2
st

CN | 425 75 440 60 0.

N 7
6
LST | 440 70 450 50 0.
M 7
9
GN | 460 55 465 35 0.
N 8
5

GNN registered the best Kappa coefficient (0.85), which is an affirmative indication of high accordability to ground-
truth pest records. The pixel-wise identification that CNN provided was especially useful in the case of detecting the
initial signs of foliage stress, whereas the sequential idea of LSTM made sense in situations when it comes to
predicting the extent of outbreak at the time of climate fluctuation [12].

4.5 Importance and Sensitivity of features

The ranking of feature importance was performed using the model of the Random Forest to explain the key
environmental variables affecting the movement of pests (Table 3).
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Table 3. Top Ten Influential Features (Random Forest Importance Scores)

Rank Feature Importan
ce Score

1 Mean 0.214
Temperature (°C)

2 NDVI Variability | 0.181

3 Relative 0.143
Humidity (%)

4 Elevation (m) 0.108

5 Rainfall 0.096
(mm/week)

6 Land Cover Type | 0.074

7 Soil Moisture | 0.062
Index

8 Distance to Water | 0.049
Bodies (m)

9 Wind Speed (m/s) | 0.039

10 Solar Radiation 0.034

The variability of temperature and NDVI became the most significant predictors, which means that not only the
activity of climatic warmth but also the health of vegetation contributes directly to the migration of pests. It was found
that high moisture levels, as well as moderate rainy conditions, promoted reproduction cycles of the pests, whereas
altitude had an impact on the dispersal boundaries [13].
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Coconut slug caterpillar)

k.a A-‘aymu.g
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Figure 4: “A survey on pest detection and classification in field crops using artificial intelligence techniques”
4.6 Cross-Valley Generalization
The models were trained on each of two valleys and tested on the third one to verify cross-regional generalization.
Table 4 results suggest that performance declines slightly in the case of extrapolation to unseen geography particularly
in the case of CNN because of the differences in terrain texture, but GNN retained high adaptability [14].
Table 4. Cross-Valley Validation Performance (AUC values)

Training Valleys |Ran |CN |L |G
- Testing Valley dom | N S N
For T | N
est M
Cusco & 1083 108 |0.|0
Chimborazo - 6 8 |.
Cochabamba 8 g
Cusco & 1084 (08 |0.|0
Cochabamba - 7 8 |.
Chimborazo 9 g
Chimborazo & | 0.82 ({08 |0. |0
Cochabamba - S 8 |.
Cusco 7 i

These results indicate that GNN would provide steady AUC values (more than 0.91) that will prove its reliability in
various ecological zones, as well as, pest pressure gradient.

V. CONCLUSION

The study entitled Geo-Spatial Pest Migration Modelling of Andean Tuber Production with Al supports the
transformative nature of artificial intelligence to solve one of the most severe scourges in agriculture the Pest Migration
and its effect on Tuber crop productivity. The study has managed to incorporate multi-source geospatial data with
sophisticated Al algorithms including the Random Forest model, CNN-LSTM model, SVM model, and the Gradient
Boosting model that enables it to create a predictive framework to map the zones of infestation by pests and predict
the migration dynamics in different environmental conditions. The results indicated that CNN-LSTM performed better
than traditional models that demonstrated more spatial-temporal accuracy and versatility to andean terrain conditions
whereas the random Forest and gradient boosting implied good interpretability and strength.
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In comparison to the related studies, which were only based on the rudimentary climatic models or linear regression
techniques, the current research features a more comprehensive, data-driven technique, which characterizes dynamic
interrelations between the climatic variables, the vegetation indices, and the pest behaviors. Its high-performance
model of increased accuracy, precision, and recall demonstrates the significance of pest management Al-GIS
integration in the context of sustainability. The system built assists in the early-warning systems so that early
interventions can be threatened and to a large extent the losses in crops and dependence on pesticides can be mitigated.
Conclusively, the study is relevant to the body of knowledge on precision agriculture and food security because it
provides a framework of scalable and intelligent technology applicable to other agricultural systems in extreme
altitudes and climatic conditions. It is possible that future research will concentrate on integrating real-time satellite
locations, drone-imaging and farmer-provided participative terms to further develop geo-spatial Al-based pest
modelling systems in predictive and practical terms.
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